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Modeling segregation distortion for viability selection
I. Reconstruction of linkage maps with distorted markers
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Abstract Molecular markers have been widely used

to map quantitative trait loci (QTL). The QTL map-

ping partly relies on accurate linkage maps. The non-

Mendelian segregation of markers, which affects not

only the estimation of genetic distance between two

markers but also the order of markers on a same

linkage group, is usually observed in QTL analysis.

However, these distorted markers are often ignored in

the real data analysis of QTL mapping so that some

important information may be lost. In this paper, we

developed a multipoint approach via Hidden Markov

chain model to reconstruct the linkage maps given a

specified gene order while simultaneously making use

of distorted, dominant and missing markers in an F2

population. The new method was compared with the

methods in the MapManager and Mapmaker pro-

grams, respectively, and verified by a series of Monte

Carlo simulation experiments along with a working

example. Results showed that the adjusted linkage

maps can be used for further QTL or segregation

distortion locus (SDL) analysis unless there are strong

evidences to prove that all markers show normal

Mendelian segregation.

Keywords EM algorithm � Genetic linkage map �
Hidden Markov chain � Segregation distortion �
Viability selection

Introduction

Segregation distortion loci (SDL), defined as chromo-

somal regions that cause distorted segregation ratios,

are usually detected by means of the non-Mendelian

segregation of markers linked to the SDL (Lyttle 1991;

Carr and Dudash 2003). The distortion is presumed to

be resulted from altered survival among some classes of

gametes at an SDL before fertilization or from viability

differences of SDL genotypes post-fertilization but

before genotype scoring (Falconer and Mackey 1996).

The previous studies showed that segregation distortion

affects linkage tests and the estimation of genetic dis-

tances (Garcia-Dorado and Gallego 1992; Lorieux

et al. 1995a, b). However, most statistical methods used

for map construction ignore these distorted markers

(Lander and Green 1987; Jiang and Zeng 1997).

Therefore, it is necessary to study the effect of distor-

tion on the estimation of genetic distance.

In the construction of genetic linkage maps using

molecular markers, there are three steps: firstly clus-

tering markers into linkage groups, secondly estimating

pair-wise recombination frequencies in each of the

linkage groups and finally optimizing the orders of

markers in all linkage groups. Lander and Green (1987)

developed a multilocus analysis method using Hidden
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Markov chain model to construct genetic linkage maps.

Jiang and Zeng (1997) extended the statistical method

of Lander and Green (1987) to the situation of sys-

tematically dealing with dominant and missing markers

in experimental populations derived from two inbred

lines. However, the above-mentioned studies did not

address the case of distorted markers. Lorieux et al.

(1995a, b) used two-point method to reestimate the

genetic distance between adjacent markers under the

two viability genes model, but this approach raises

some problems. For the codominant markers in a F2

population, firstly, the first derivative of the likelihood

function with respect to recombination fraction has no

analytical solution, thus Newton–Raphson algorithm

has to be used (Edwards 1972). Then, the updated value

for recombination frequency may occasionally have

lower likelihood. Finally, the convergence may be very

slow if the initial value of parameter is far from the

maximum likelihood estimate (MLE), especially in

high-dimensional spaces (Lander and Green 1987).

Therefore, it is necessary to extend the multipoint

analysis method to more general situations, considering

distorted, dominant and missing markers at the same

time. In the paper, we focus on estimating the recom-

bination frequency between distorted markers given a

specified order of loci on a linkage group.

Several programs offer options to compute the

recombination fractions in case of deviation from the

Mendelian hypothesis, i.e., G-Mendel, MapManager,

Mapdisto et al, but almost all the cited programs can

not validate the corrected values. The reason is that

the above investigations have been seldom addressed

in theoretical simulation studies. The challenge

encountered in modeling viability selection is mainly

caused by unavailability of phenotype data on the

traits. Luo et al. (2005) considered an imaginary trait,

liability, invisible to the investigators but visible to

nature. If the individual’s trait exceeds a threshold,

then the individual survives, otherwise will be elimi-

nated. There is no doubt that the work of Luo and

his colleagues is a reminiscence of both modeling

segregation distortion from viability selection and

comparing the adjusted values of recombination

fractions using the cited programs with the true val-

ues. In order to validate the reliability and the cor-

rectness of the adjusted values of the recombination

fractions between distorted markers, we carried out

intensive simulations that mimic the segregation dis-

tortion derived from viability selection, and compared

the results obtained from the new method with those

from the cited programs, i.e., MapManager and

Mapmaker.

Materials and methods

Genetic model

Let zj be the liability of the jth individual in the F2

population under study. It can be indicated by the

following linear model

zj ¼ gj þ ej ð1Þ

where gj is the genotypic value of the jth individual for

the SDL considered, and ej is a normally distributed

residual variable with mean zero and standard

deviation 1.0, which accounts for polygenes that are

linked to the markers and for environmental variation

(Luo et al. 2005). Three genotypes at this locus, AA,

Aa and aa, are assumed to have genotypic values
ffiffiffi

2
p

a� d; d; and �
ffiffiffi

2
p

a� d; respectively, with a and d

indicating additive and dominant effects. We

hypothesize that the liability is subject to natural

selection. An individual will survive if zj ‡ 0 and will be

eliminated from the population if zj < 0, since all the

sampled individuals have survived from the viability

selection, the liability of each genotype will follow

a truncated distribution with a cumulative probability,

Gj = k (k = 1, 2, 3), with

fk ¼ Prðzj> 0jGj ¼ kÞ ¼ U ð2� kÞ
ffiffiffi

2
p

aþ ð�1Þkd
h i

ð2Þ

where k indexes the genotype at the SDL, and fk is also

referred to as the relative fitness of the kth genotype of

the locus. The expected frequencies of three genotypes

AA, Aa and aa, respectively, at the SDL will be:

pAA ¼
0:25f1

0:25f1 þ 0:5f2 þ 0:25f3
¼ f1

f1 þ 2f2 þ f3
ð3Þ

similarly

pAa ¼
2f2

f1 þ 2f2 þ f3
paa ¼

f3

f1 þ 2f2 þ f3

Reconstruction of genetic linkage maps

Given that all markers are neutral and codominant, the

observed segregation distortion of markers is caused by

one or more SDL near the markers. Other possible

sources, such as partial manifestation or structural

rearrangements like translocations, will not be consid-

ered in this study. As for gametic selection, for conve-

nience, we always assume that only male gametes are

affected. The assumption seems to be realistic because

pollen grains are more often affected by differential
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viability or by different capacity to fertilization, than are

ovules.

Let the order of the m markers on a same chro-

mosome be M1, M2, ..., Mm, and xk be a dummy

variable defined as xk = 1, 0, –1 for a homozygote of

P1, a heterozygote and a homozygote of P2 at the kth

marker, respectively. Similarly, make zk be indicator

for the phenotype of the kth marker Mk. Provided

that there is no crossing-over interference among the

markers on the considered linkage group, SDL may

cause segregation distortion of some or all markers

linked to SDL on the chromosome. We assume that

the distorted markers are caused by viability selec-

tion and three genotypes at each marker locus have

different viability coefficients. In other words, the

viability coefficients of Mk mk and mk mk relative to

Mk Mk at the kth marker are sk,1 and sk,2, respec-

tively (0 � sk,1 < + ¥ and 0 � sk,2 < + ¥ for k =

1, 2, ..., m). Therefore, it is necessary to estimate the

2m coefficients if the zygotic selections of all the

markers are to occur. As for F2 population, it is

possible to determine which type of selection oc-

curred at a locus by using two successive Chi-square

tests (Pham et al. 1990; Lorieux et al. 1995b). In our

model, gametic selection is a special case of the zy-

gotic selection. If sk,1
(1) = (1 + sk,2)(1)/2(k = 1,2, ...,

m), this becomes a gametic selection model. The case

of sk,1 = sk,2 = 1(k = 1, 2, ..., m) shows usual

Mendelian segregation.

If we incorporate the above viability model into the

methods of both Lander and Green (1987) and Jiang

and Zeng (1997), the logarithm likelihood is defined

by

log L ¼
X

n

i¼1

log q0zi1
Hzi2
ðr1ÞHzi3

ðr2Þ; . . . ;Hzim
ðrm�1Þc½ �

ð4Þ

where n represents population size, q
zi1

denotes the

column vector of the prior probability Pr(x1), q0
zi1

=

[Pr (x1 = 1), Pr (x1 = 0), Pr(x1 = – 1)] and c¢ = [1,

1, 1], ¢ denotes transpose of a matrix or vector, rk is

the recombination fraction between the kth and

(k+1)th markers, and the transition probability ma-

trix H(rk) from marker Mk to Mk+1 is

It is noted that we should specify appropriate

marker matrix elements of zero depending on the

information of the markers, i.e, only one element in

the transition matrix takes value of 1 and all other

equal zero when fully informative markers occur (see

also Jiang and Zeng 1997).

There are several methods to obtain the MLEs of

both rk (k = 1, ..., m – 1) and sk,j (j = 1, 2 and k = 1, 2,

..., m), we here adopt an Expectation–Maximization

(EM) algorithm (Dempster et al. 1977). The proce-

dures are summarized as:

Step 1. Initialization: The initial value of the recom-

bination fraction rk (k = 1, 2, ..., m – 1) along

with the order of markers on the linkage

group is obtained by the software Map-

maker 3.0 (Lander et al. 1987). The viability

coefficients, sk,1
(0) and sk,2

(0) for k = 1, 2, ..., m, are

initialized with 1.

Step 2. Updating the matrix Ak : Let Ak = (ak,icd),

denoted by P(xk xk+1 |z1, ..., zm) in a 3 · 3

matrix form, where ak,icd is the cth row and

dth column element of Ak for the ith indi-

vidual. Using the multipoint method, the

posterior probabilities P(xk xk+1 |z1, ...,zm)

for each individual can be calculated by

Pðxkxkþ1jz1; . . . ; zmÞ ¼

pðxkxkþ1Þpðz1; . . . ; zmjxk; xkþ1Þ
P

xo; xoþ1
pðxoxoþ1Þpðz1; . . . ; zmjxo; xoþ1Þ

ð5Þ

Step 3. Updating the estimate of recombination frac-

tion: The recombination fraction between the

kth and (k+1)th markers can be updated

using

Hziðkþ1Þ ðrkÞ ¼

ð1�rkÞ2

ð1�rkÞ2þ2skþ1;1rkð1�rkÞþskþ1;2r2
k

2skþ1;1rkð1�rkÞ
ð1�rkÞ2þ2skþ1;1rkð1�rkÞþskþ1;2r2

k

skþ1;2r2
k

ð1�rkÞ2þ2skþ1;1rkð1�rkÞþskþ1;2r2
k

rkð1�rkÞ
ð1þskþ1;2Þrkð1�rkÞþskþ1;1ð1�2rkþ2r2

k
Þ

skþ1;1ð1�2rkþ2r2
k
Þ

ð1þskþ1;2Þrkð1�rkÞþskþ1;1ð1�2rkþ2r2
k
Þ

skþ1;2rkð1�rkÞ
ð1þskþ1;2Þrkð1�rkÞþskþ1;1ð1�2rkþ2r2

k
Þ

r2
k

r2
k
þ2skþ1;1rkð1�rkÞþskþ1;2ð1�rkÞ2

2skþ1;1rkð1�rkÞ
r2

k
þ2skþ1;1rkð1�rkÞþskþ1;2ð1�rkÞ2

skþ1;2ð1�rkÞ2

r2
k
þ2skþ1;1rkð1�rkÞþskþ1;2ð1�rkÞ2

2

6

6

6

6

4

3

7

7

7

7

5
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Step 4. Updating the viability coefficients: the selec-

tion coefficients can be updated as

where

Dk ¼ð1þ s
ð0Þ
k;2s
ð0Þ
kþ1;2Þð1� r

ð0Þ
k Þ

2 þ 2r
ð0Þ
k ð1� r

ð0Þ
k Þ

s
ð0Þ
k;1ð1þ s

ð0Þ
kþ1;2Þ þ s

ð0Þ
kþ1;1ð1þ s

ð0Þ
k;2Þ

h i

þ r
ð0Þ2
k ðsð0Þk;2 þ s

ð0Þ
kþ1;2Þ þ 2ð1� 2r

ð0Þ
k þ 2r

ð0Þ2
k Þ

� s
ð0Þ
k;1s
ð0Þ
kþ1;1

X(k) and W(k) are indicator variables, X(k) = 1 if 1 �
k < m otherwise takes a value of zero; W(k) = 1 if 1 <

k � m otherwise takes a value of zero. In addition, we

set sk,1
(1) = (1 + sk,2

(1))/2 when gametic selection occurs.

As long as the kth marker shows normal Mendelian

segregation (k = 1, ..., m), the sk,1
(1) and sk,2

(1) take a value

of 1, and the Eq. 6 will be translated into our familiar

expression of Jansen and Stam (1994) or Jiang and

Zeng (1997). Step 2 is the E-step, and steps 3 and 4 are

the M-step. The E-step and M-step are iterated until

convergence occurs. The appendix gives a step-by-step

derivation of Eqs. 6, 7 and 8.

Applications

Simulation model

Based on the method described in Luo et al. (2005),

the genotypes of both distorted markers and SDL in F2

population could be simulated under the zygotic

selection model. The genetic variance (Vg) in an F2

population is

s
ð1Þ
k;1¼

XðkÞ
Pn

i ak;i21þak;i22þak;i23

� �

þWðkÞ
Pn

i ak�1;i12þak�1;i22þak�1;i32

� �

2n XðkÞ ð1þ s
ð0Þ
kþ1;2Þr

ð1Þ
k ð1� r

ð1Þ
k Þþ s

ð0Þ
kþ1;1 1�2r

ð1Þ
k þ2r

ð1Þ2
k

� �h i

=DkþWðkÞ 1þ s
ð0Þ
k�1;2

� �

r
ð1Þ
k�1 1� r

ð1Þ
k�1

� �

þ s
ð0Þ
k�1;1 1�2r

ð1Þ
k�1þ2r

ð1Þ2
k�1

� �h i

=Dk�1

n o

ð7Þ

s
ð1Þ
k;2¼

XðkÞ
P

n

i

ak;i31þak;i32þak;i33

� �

þWðkÞ
P

n

i

ðak�1;i13þak�1;i23þak�1;i33Þ

n XðkÞ r
ð1Þ2
k þ2r

ð1Þ
k ð1� r

ð1Þ
k Þs

ð0Þ
kþ1;2þ s

ð0Þ
kþ1;1 1� r

ð1Þ2
k

� �h i

=DkþWðkÞ r
ð1Þ2
k�1þ2r

ð1Þ
k�1 1� r

ð1Þ
k�1

� �

s
ð0Þ
k�1;2þ s

ð0Þ
k�1;1 1� r

ð1Þ2
k�1

� �h i

=Dk�1

n o

ð8Þ

Vg ¼ pAAð
ffiffiffi

2
p

a� dÞ2 þ pAad2 þ paa �
ffiffiffi

2
p

a� d
� �2

� pAA

ffiffiffi

2
p

a� d
� �

þ pAadþ paa �
ffiffiffi

2
p

a� d
� �h i2

¼ 4 f1f2 þ 2f1f3 þ f2f3ð Þa2 � 2
ffiffiffi

2
p
ðf1 � f3Þð2f2 � f1 � f3Þadþ 8f2ðf1 þ f3Þd2

ðf1 þ 2f2 þ f3Þ2
ð9Þ

r
ð1Þ
k ¼

1

2n

X

n

i¼1

ak;i12þ2ak;i13þak;i21þ
2r
ð0Þ2
k

r
ð0Þ2
k þð1� r

ð0Þ
k Þ

2
ak;i22þak;i23þ2ak;i31þak;i32

" #

�
r
ð0Þ
k ð1� r

ð0Þ
k Þ r

ð0Þ
k ðs

ð0Þ
k;2þ s

ð0Þ
kþ1;2Þ�ð1� r

ð0Þ
k Þð1þ s

ð0Þ
k;2s
ð0Þ
kþ1;2Þþð1�2r

ð0Þ
k Þðs

ð0Þ
k;1ð1� s

ð0Þ
kþ1;1þ s

ð0Þ
kþ1;2Þþð1� s

ð0Þ
k;1þ s

ð0Þ
k;2Þs

ð0Þ
kþ1;1Þ

h i

Dk

ð6Þ
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and the broad heritability is

h2
b ¼ Vg=ðVg þ 1Þ ð10Þ

Let dr = d/a be dominance ratio. Once broad heri-

tability and dominance ratio of the SDL are known,

the additive and dominant effects can be obtained

using a numerical algorithm, as described for example

by Press et al. (2001), in order to solve Eqs. 9 and 10.

Effect of SDL heritability on the estimation

of genetic distances

Eleven equally spaced markers were simulated on a

single-chromosome segment of length 100 cM. A single

SDL with dominance ratio of 0.5 was located at posi-

tion 25 cM. One hundred independent simulations

were performed for each set of parameters, with sam-

ple size 200. The mean and the standard deviations

obtained from 100 replicates were given. The differ-

ences between the estimated genetic distances consid-

ering SDL and those without considering SDL were

evaluated by paired comparisons t test. The statistical

significance threshold for rejecting H0 was be chosen

from central t distribution on the basis of Bonferroni

argument due to multiple paired comparisons t tests on

a chromosome (Lander and Botstein 1989). The results

are listed in Table 1. The results show that the cor-

rected genetic distances are closer to the corresponding

true values than the corresponding uncorrected ones.

The standard deviation among the adjusted estimates

is smaller than that among the corresponding uncor-

rected ones. Among most of the intervals, the cor-

rected genetic distance significantly differs from the

uncorrected one but not from the corresponding true

value. To our surprise and interest, a dramatic increase

in the t values has been observed when the broad

heritability increased from 0.05 to 0.15 and all the

peaks of t values locate in the third interval where the

true SDL resides.

Effect of multiple SDL on the estimation

of genetic distances

Having demonstrated the superiority of the proposed

method that takes into account the marker segregation

distortion, we now implement the new method under

the situation of multiple SDL. Eleven SDL were sim-

ulated with the same heritability of 0.02, the same

dominance ratio of 1.0 and the locations at marker

positions 0, 10, ..., 100 cM, respectively. The sample

size was 200. The genetic distances between adjacent T
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markers with and without considering segregation

distortion were computed, respectively. The mean and

the standard deviation obtained from 100 replicates are

listed in Table 2. Obviously, t results are similar to

those obtained for a single SDL. This denotes that the

proposed method can correct the bias derived from

multiple SDL. As compared with the true length, the

total length of the chromosome without considering

segregation distortion is usually underestimated.

Comparison of the new method with the methods

in the MapManager and Mapmaker programs

In order to confirm the reliability and the correctness

of the adjusted values based on our multipoint analysis,

we compared the method described in this paper with

the methods in the MapManager and Mapmaker pro-

grams, respectively. We simulated one chromosome of

100 cM long covered by 11 evenly spaced codominant

markers and put two SDL at position 10 and 20 cM

(exactly the second and the third marker loci),

respectively. One hundred simulation runs were per-

formed for a sample size of 300. Each of datasets was

analyzed thrice by the proposed method here, the

Mapmaker (Lander et al. 1987) and the MapManager

programs (QTX for Windows, Manly et al. 2001). The

results are summarized in Table 3. The results show

that the corrected genetic distances based on the new

method are closer to the true ones whereas the esti-

mates of the genetic distances based on the MapMan-

ager and the Mapmaker programs are severely biased

(Table 3). In addition, the MapManager QTX has an

option called Allow for segregation distortion which

causes it to use, where possible. There is no significant

difference between genetic distances estimated with

these two options (data not shown).

A working example

As a demonstration of the proposed method in this

paper, we analyzed a real data of a F2 population

containing 157 individuals derived from the rice cross

between CPSLO17 and W207-2. A set of 117 SSR

markers and one RAPD marker covered 2,423 cM of

the genome with an average marker interval of 23 cM.

According to the two successive Chi-square tests, there

are 39 markers which deviate from Mendelian segre-

gation ratios (P < 0.05), accounting for 33.05% of

the total markers. This indicates that there are many

distorted markers. Therefore, it is necessary to correct

the genetic distance between adjacent markers. As an

illustrative example, only the data from chromosome 8

were used to demonstrate our method (Table 4).

The genetic distances between adjacent markers are

computed twice with and without considering distorted

markers, respectively, and some results with segrega-

tion distortion of markers are listed in Table 5. The

results from Table 5 show that the genetic distances

between distorted markers considering segregation

distortion are usually larger than those without con-

sidering segregation distortion although there are one

or two exceptions. In order to clarify the genetic reason

for the differences, the genotypic frequencies of two

distorted markers were calculated. Given that SDL

resided on these distorted markers, the additive and

dominant effects of these putative SDL are estimated

by using the method of Luo et al. (2005). The results

show that the additive and dominant effects of the

putative SDL on the fourth marker of chromosome 8

are –0.4851 and –0.4388, respectively, and those on the

sixth marker are –0.2788 and –0.0198, respectively. It is

obvious that the former is close to the complete dom-

inant model, and the latter close to the additive model.

The difference in heritance mode is probably the cause

of the different bias of the estimate of genetic distance.

Moreover, in order to further understand the behavior

of the estimates of the genetic distances between

adjacent markers considering segregation distortion,

1,000 bootstrap samples of chromosome 8 as an entity

are simulated. The results are listed in Table 6. The

standard error and 95% confidence interval consider-

ing distorted markers are usually smaller than the

corresponding values without taking into account the

segregation distortion.

Table 2 Effect of eleven SDL on the genetic distance between adjacent markers

Estimate Genetic distance between adjacent markers (cM)

10 10 10 10 10 10 10 10 10 10

Estimate 1 9.76(1.78) 9.85(1.85) 9.96 (1.54) 9.81(1.88) 9.91(1.82) 9.90(1.82) 9.96(1.64) 9.98(1.57) 9.92(1.57) 9.88(1.74)
Estimate 2 8.90(1.90) 9.00(1.98) 8.76 (1.64) 9.19(2.07) 8.97(2.03) 8.63(2.08) 9.08(1.78) 8.85(1.69) 9.15(1.63) 9.09(1.84)
t value 8.52 8.53 10.23 10.90 8.45 7.72 8.75 7.53 6.73 5.24

For each SDL, its heritability and dominance ratio were set at 2% and 1.0, respectively. Sample size was 200 and replication was 100
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Discussion

Segregation distortion of markers is a common phe-

nomenon observed in QTL analysis (Lyttle 1991).

Most quantitative geneticists interested in QTL map-

ping hesitate to use these distorted markers for QTL

mapping because the basic assumption of Mendelian

segregation is violated. Too many distorted markers

will cause tremendous information loss in QTL map-

ping if these markers are removed from the marker

maps (Luo et al. 2005). Furthermore, viability selection

is known to bias the estimation of recombination val-

ues between consecutive markers and the order of the

markers on linkage groups (Lorieux et al. 1995a, b).

We describe here an alternative algorithm for recon-

structing genetic linkage maps given a specified gene

order while considering segregation distortion from

viability selection and incomplete information at

markers. Our analysis is similar to the method of

Lander and Green’s (1987) in spirit, but we extend the

construction of genetic linkage maps to a more general

situation of simultaneously taking into account dis-

torted, dominant and missing markers. The simulated

investigations show that the adjusted genetic distances

based on the proposed method here are close to the

true ones and demonstrate the superiority of the new

method over the existing ad hoc method in cited pro-

grams, i.e. MapManager, Mapmaker.

The analysis, of course, depends on the assumption

of no crossing-over interference. When there is nega-

tive crossing-over interference, which is a usual case,

the probability of double or triple crossing-over events

will be lower than that considered in the algorithm.

However, those probabilities are of a lower magnitude

in the analysis, and the effect of the assumption of no

crossing-over interference is likely to be small for the

algorithm.

The accuracy of any maximum-likelihood method of

ordering loci is directly related to the quality of the

estimation of the recombination frequencies. The ge-

netic distances between adjacent markers can be cal-

culated based on our multipoint method. However,

gene order is typically not known. Generally speaking,

combinatorial optimization techniques, i.e. simulation

annealing algorithm (Kirkpatrick et al. 1983) and

heuristic algorithm (Ansari and Hou 1999), can be used

together with the methods described above to find the

best gene order yielding maximum-likelihood maps

with the highest likelihood.

With our approach, it is possible to efficiently con-

struct genetic linkage maps considering distorted,

dominant and missing markers at the same time.

Analyses can be extended to a general full-sib family or T
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the selfing of outcrossing individuals by changing the

transition probabilities between adjacent loci. Al-

though these changes are trivial, they will complicate

presentation substantially and the missing phase infor-

mation needs to be considered. In addition, the multi-

point algorithm is relatively important for the full-sib

Table 4 The two contingency analyses for the markers on the eighth chromosome in the real data analysis

Marker Number of three genotypes The allelic test The genotypic test

n1(MM) n2(Mm) n3(mm) v1
2 P value v2

2 P value

RM506 29.00 74.72 53.28 3.76 0.056 7.88 0.005
RM152 36.18 63.62 57.20 2.81 0.093 11.26 0.001
RM6863 34.25 62.70 60.05 4.24 0.040 14.83 0.000
RM5068 32.69 53.67 70.64 9.17 0.003 34.059 5.4e-9
RM547 32.48 70.84 53.68 2.86 0.091 7.22 0.007
RM331 27.81 77.30 51.89 3.69 0.055 7.42 0.006
RM223 36.11 73.32 47.57 0.83 0.361 2.35 0.125
RM284 32.19 73.69 51.12 2.28 0.131 5.16 0.023
RM256 25.00 78.00 54.00 5.36 0.020 10.72 0.001
RM264 29.23 71.54 56.23 4.64 0.031 10.52 0.001
RM281 29.04 72.93 55.03 4.30 0.038 9.40 0.002

Table 6 Average (Ave), standard error (SE) and 95% confidence interval (CI) of the genetic distances from 1,000 bootstrap samples
for the eighth chromosome in the real data analysis

Marker interval The corrected genetic distance The uncorrected genetic distance

Ave SE CI (95%) Ave SE CI (95%)

1 7.74 0.05 (4.90, 10.64) 7.38 0.05 (5.04, 12.46)
2 15.65 0.08 (10.62, 20.14) 15.64 0.09 (10.31, 20.45)
3 29.77 0.18 (20.30, 39.55) 14.30 0.16 (5.97, 23.04)
4 37.30 0.25 (24.25, 51.92) 33.34 0.32 (17.27, 50.83)
5 25.70 0.16 (17.03, 34.73) 28.66 0.24 (17.23, 41.34)
6 18.12 0.10 (12.53, 23.54) 17.68 0.10 (12.20, 22.95)
7 11.21 0.08 (6.73, 15.67) 10.96 0.08 (6.63, 15.23)
8 35.72 0.22 (23.88, 48.09) 35.88 0.24 (22.68, 48.95)
9 45.44 0.25 (31.18, 58.88) 43.79 0.25 (30.36, 57.07)
10 9.54 0.07 (5.64, 13.13) 9.00 0.07 (5.13, 14.46)

Table 5 The estimated genetic distances between adjacent markers for eight chromosomes with and without considering distorted
markers

Chromosome Marker interval

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 Estimate 1 7.19 16.96 40.47 10.63 45.30 30.27 31.53 20.10 27.83
Estimate 2 6.32 15.18 40.49 10.63 45.30 30.27 31.53 20.10 27.83

3 Estimate 1 22.32 14.82 22.14 36.37 15.12 50.37 7.93 55.41 13.88 3.38 39.22 5. 93 14.58 5.98
Estimate 2 22.32 14.82 22.14 36.37 15.12 50.30 7.43 53.17 14.00 3.12 35.95 5. 68 13.56 5.26

4 Estimate 1 33.53 9.19 38.50 14.29 28.09 18.83 15.49
Estimate 2 31.85 9.19 38.49 14.11 27.65 18.83 15.49

6 Estimate 1 9.57 21.26 43.30 11.85 15.05 34.84 48.67 10.39
Estimate 2 9.65 20.76 41.99 10.86 15.05 34.84 48.67 10.39

8 Estimate 1 7.66 15.55 29.12 36.13 25.13 18.01 11.14 34.71 44.91 9.57
Estimate 2 7.28 15.50 23.86 32.64 28.50 17.76 11.18 35.06 42.69 8.96

9 Estimate 1 31.83 31.98 16.52 20.73 16.47 1.00 41.04
Estimate 2 27.30 28.06 15.53 20.74 16.47 1.00 41.04

10 Estimate 1 9.39 16.89 22.69 19.57 40.97 46.31 9.39 16.89 22.69
Estimate 2 9.35 16.85 22.63 19.58 39.66 43.55 9.35 16.85 22.63

12 Estimate 1 17.97 50.51 16.06 21.81 9.58 45.65 4.85 17.97
Estimate 2 17.69 50.56 16.06 21.81 7.58 40.79 4.41 17.69

302 Theor Appl Genet (2007) 114:295–305

123



design. For codominant markers, it is possible to

determine what type of selection occurred at a locus by

using two successive Chi-square tests, the allele test and

the genotype test, respectively . As for partial infor-

mation markers, i.e. dominant or missing markers, the

posterior probabilities of three genotypes at marker

locus for each individual are computed by multipoint

method, prior to conducting the two successive Chi-

square tests. By contrast, for a single marker test, the

estimates of alleles of allelic frequencies are biased in

case of incompletely informative markers (Pham et al.

1990). There is no doubt that considerable number of

false positive SDLs in the single marker Chi-square test

are present, yet this complication would be solved by a

multipoint likelihood ratio test. The related investiga-

tions will be discussed in a companion paper.

Segregation distortion is a common occurrence

within species and inter specific hybridizations (Whitkus

1998). This may be caused by structural rearrangements,

i.e. inversions, which constitute a pre-fertilization

mechanism. As an alternative to selected genes, struc-

tural rearrangements such as translocations may affect

the viability of gametes (Faure et al. 1993). The models

described above do not apply in this case, and the

probable answer is not a statistical issue.

The source codes for a C++ program, with which the

above calculations can be performed and they are

available for scientific use from Dr. Zhu (cszhu@si-

na.com) or Dr. Zhang (soyzhang@njau.edu.cn).
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Appendix

We use here the F2 design as an example to infer the

maximum likelihood estimate of recombinant fraction

between two markers.

One-gene model

Provided that only one marker, M1, displays zygotic

viability selection, the viabilities of genotypes M1 m1

and m1 m1 relative to M1 M1 are s1 and s2, respectively.

Thus, the frequencies for the three genotypes among

the survival individuals after selection are 1/D for M1

M1, 2s1/D for M1 m1, and s2/D for m1 m1, respectively,

where D = 1 + 2s1 + s2. If another marker, M2, is

linked to the marker M1 with recombinant fraction r.

The expected frequencies of nine F2 genotypes are a

function of the viability coefficients and the recombi-

nation fraction, arrayed by Fig. a

(A1)

The MLE of r is obtained by the EM algorithm for a

normal F2. This is because the first derivative of the

likelihood function with respect to recombination

fraction contains no information about the viability

coefficients s1 and s2. It indicates that the estimate of r

is not affected by the viability coefficients. Thus we can

estimate r directly using the familiar formula in the M

step of Jansen and Stam (1994)

r̂¼

1

2n
n12þ2n13þn21þ

2r2

r2þð1� rÞ2
n22þn23þ2n31þn32

" #

ðA2Þ

where n =
P

i=1
3 P

j=1
3 nij, these nij were the number of

the nine genotypes above in matrix A1. Parameters s1

and s2 are obtained by

ŝ1 ¼
n21 þ n22 þ n23

2ðn11 þ n12 þ n13Þ
ŝ2 ¼

n31 þ n32 þ n33

n11 þ n12 þ n13
ðA3Þ

Based on the Fisher’s information matrix, the sam-

ple variance of MLE of the recombination fraction can

be indicated by

Vðr̂Þ ¼ Drð1� rÞð1� 2r þ 2r2Þ
2n Dð1� 2rÞ2ð1� 2r þ 2r2Þ þ 4ð1þ s2Þrð1� rÞð1� 2r þ 2r2Þ þ 4s1rð1� rÞð1� 2rÞ2
h i ðA4Þ
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It is obvious that the sample variance of the

recombination fraction is affected by the viability

coefficients.

Two-gene model

Provided that two linked markers with recombinant

fraction r, say M1 and M2, display zygotic viability

selection, so the viabilities of genotypes M1 m1 and m1

m1 relative to M1 M1 are s1,1 and s1,2, respectively; for

the marker M2, similarly, they are s2,1 and s2,2,

respectively. Thus, the expected frequencies of nine F2

genotypes are a function of the viability coefficients

and the recombination fraction, arrayed by

(B1)

(B2)

where � stands for the component-wise product be-

tween the two matrices, the first (Fr) only associated

with r and the second with si;jði; j ¼ 1; 2Þ and

D ¼ ð1þ s1;2s2;2Þð1� rÞ2 þ 2rð1� rÞ½s1;1ð1þ s2;2Þ þ s2;1

ð1þ s1;2Þ� þ r2ðs1;2 þs2;2Þ þ 2ð1� 2r þ r2Þs1;1s2;1: The

EM algorithm can be used to obtain the MLE of r

based on matrix B1, but this will be difficult to derive

because the coefficients within each cell of this matrix

contain r. By dividing matrix B1 into two component

matrices in B2, however, we can simplify this deriva-

tion process. Based on the results of Wu et al. (2005),

similarly, the MLE of r can be expressed by

r̂¼

1

2n
n12þ2n13þn21þ

2r2

r2þð1� rÞ2
n22þn23þ2n31þn32

" #

� rð1� rÞ
2D

@D

@r
ðB3Þ

where

@D

@r
¼ 2 rðs1;2 þ s2;2Þ � ð1� rÞð1þ s1;2s2;2Þ
�

þ ð1� 2rÞ s1;1ð1� s2;1 þ s2;2Þ þ s2;1ð1� s1;1 þ s1;2Þ
� �

o

The four viability coefficients ŝi;jði; j ¼ 1; 2Þ can be

estimated simultaneously

ŝ1;1 ¼
Dðn21 þ n22 þ n23Þ

2n ð1þ s2;2Þrð1� rÞ þ s2;1ð1� 2r þ 2r2Þ
� �

ŝ1;2 ¼
Dðn31 þ n32 þ n33Þ

n r2 þ 2rð1� rÞs2;2 þ s2;1ð1� r2Þ
� �

ŝ2;1 ¼
Dðn12 þ n22 þ n32Þ

2n ð1þ s1;2Þrð1� rÞ þ s1;1ð1� 2r þ 2r2Þ
� �

ŝ2;2 ¼
Dðn13 þ n23 þ n33Þ

n r2 þ 2rð1� rÞs1;2 þ s1;1ð1� r2Þ
� �

ðB4Þ

As for multiple viability loci, the viability coeffi-

cients are affected by its adjacent marker loci (i.e. the

left and the right viability loci). Thus the coefficients of

viability can be expressed as presented above.
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